Protein-energy wasting (PEW) is one of the strongest risk factors of adverse outcomes in patients with chronic kidney disease including those with end-stage renal disease (ESRD) who undergo maintenance dialysis treatment. One important determinant of PEW in this patient population is an inadequate amount of protein and energy intake. Compounding the problem are the many qualitative nutritional deficiencies that arise because of the altered dietary habits of dialysis patients.
View Article and Find Full Text PDFDietary phosphorus control is often a main strategy in the management of patients with chronic kidney disease. Dietary protein is a major source of phosphorus intake. Recent data indicate that imposed dietary phosphorus restriction may compromise the need for adequate protein intake, leading to protein-energy wasting and possibly to increased mortality.
View Article and Find Full Text PDFIn individuals with chronic kidney disease, high dietary phosphorus (P) burden may worsen hyperparathyroidism and renal osteodystrophy, promote vascular calcification and cardiovascular events, and increase mortality. In addition to the absolute amount of dietary P, its type (organic versus inorganic), source (animal versus plant derived), and ratio to dietary protein may be important. Organic P in such plant foods as seeds and legumes is less bioavailable because of limited gastrointestinal absorption of phytate-based P.
View Article and Find Full Text PDFBackground: Dietary restrictions to control serum phosphorus, which are routinely recommended to persons with chronic kidney disease, are usually associated with a reduction in protein intake. This may lead to protein-energy wasting and poor survival.
Objective: We aimed to ascertain whether a decline in serum phosphorus and a concomitant decline in protein intake are associated with an increase in the risk of death.
Background And Objectives: Several observational studies have indicated that vitamin D receptor activators (VDRA), including paricalcitol, are associated with greater survival in maintenance hemodialysis (MHD) patients; however, patients with higher serum parathyroid hormone (PTH), indicative of a more severe secondary hyperparathyroidism and higher death risk, are usually given higher VDRA dosages, which can lead to confounding by medical indication and attenuated survival advantage of high VDRA dosages. It was hypothesized that the ratio of the administered paricalcitol dosage to serum PTH level discloses better the underlying dosage-survival association.
Design, Setting, Participants, & Measurements: The 3-yr mortality predictability of the administered paricalcitol during the first 3 mo of the cohort divided by averaged serum intact PTH during the same period was examined in 34,307 MHD patients from all DaVita dialysis clinics across the United States using Cox regression.