A series of thermally activated delayed fluorescent (TADF) molecules having an imidazopyridine acceptor, a benzene linker, and a 9,9-dimethyl-9,10-dihydroacridine donor are designed and examined using a quantum chemical approach. The above framework spatially separates the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO), minimizing their overlap, ultimately resulting in a reduced energy gap between the excited singlet and triplet states (Δ). The impact of electron-donating substituents (-Me, -Et, --Bu, -OMe, and -NMe) on the donor moiety of the parent molecule 2-(4-(9,9-dimethylacridin-10(9H)-yl)phenyl)imidazo[1,2-]pyridine-3,6-dicarbonitrile (Ac-CNImPy) is investigated.
View Article and Find Full Text PDFPhys Chem Chem Phys
July 2024
The mechanism of the proton transfer in the reaction between CO and 3-amino-1-propanol with and without water molecules is investigated quantum-mechanically. Studies revealed that water molecules and the hydroxy group of 3-amino-1-propanol explicitly participate in the proton transfer, forming carbamic acid. It is found that water has a high impact on the energetics of CO absorption by reducing the barrier for proton transfer.
View Article and Find Full Text PDFXeroderma pigmentosum (XP) is a rare genetic disorder characterized by injury to the ocular surface due to exposure to ultraviolet (UV) radiation. UV-induced damage in the cells leads to the formation of cyclobutane pyrimidine dimers (CPDs) and 6-4 pyrimidine-pyrimidone photoproducts that are repaired by the NER (Nucleotide Excision Repair) pathway. Mutations in the genes coding for NER proteins, as reported in XP patients, would lead to sub-optimal damage repair resulting in clinical signs varying from photo-keratitis to cancerous lesions on the ocular surface.
View Article and Find Full Text PDFMaintaining lipid asymmetry across membrane leaflets is critical for functions like vesicular traffic and organelle homeostasis. However, a lack of molecular-level understanding of the mechanisms underlying membrane fission and fusion processes in synthetic systems precludes their development as artificial analogs. Here, we report asymmetry induction of a bilayer membrane formed by an extended π-conjugated molecule with oxyalkylene side chains bearing terminal tertiary amine moieties (BA1) in water.
View Article and Find Full Text PDF