Publications by authors named "C Ryan Zarter"

The evergreen groundcover bearberry (Arctostaphylos uva-ursi [L.] Sprengel) was characterized over two successive years (2002-2004) from both sun-exposed and shaded sites at a montane ponderosa pine and subalpine forest community of 1900- and 2800-m-high altitudes, respectively. During summer, photosynthetic capacities and pre-dawn photosystem II (PSII) efficiency were similarly high in all four populations, and in winter, only the sun-exposed and shaded populations at 2800 m exhibited complete down-regulation of photosynthetic oxygen evolution capacity and consistent sustained down-regulation of PSII efficiency.

View Article and Find Full Text PDF

Some coniferous forest ecosystems undergo complete photosynthetic down-regulation in winter. The present study examined the influence of several environmental parameters on intrinsic, needle-level photosynthesis and photoprotection during the spring reactivation of photosynthesis in subalpine conifers. Maximal photosystem II (PSII) efficiency, photosynthetic capacity, and amounts of zeaxanthin and early light-inducible protein (Elip) family members were assessed in three subalpine conifer species over 3 years, and intensively during the 2003 winter-to-spring transition.

View Article and Find Full Text PDF

Overwintering, sun-exposed and photosynthetically inactive evergreens require powerful photoprotection. The goal of this study was to seasonally characterize photosynthesis and key proteins/components involved in electron transport and photoprotection. Maximal photosystem II (PSII) efficiency and photosynthetic capacity, amounts of zeaxanthin (Z), antheraxanthin (A), pheophytin and proteins (oxygen-evolving 33 kDa protein (OEC), PSII core protein D1 and subunit S (PsbS) protein, and members of the early light-inducible protein (Elip) family) were assessed in five conifer species at high altitude and in ponderosa pine (Pinus ponderosa) at moderate altitude during summer and winter.

View Article and Find Full Text PDF