Background & Aims: Strategies to reduce liver biopsy (LB) screen failures through better patient selection are needed for clinical trials. Standard fibrosis biomarkers were not derived to detect "at-risk" metabolic dysfunction-associated steatohepatitis (MASH; MASH with metabolic dysfunction-associated steatotic liver disease score ≥4 and fibrosis stage ≥2). We compared the performance of screening pathways that incorporate NIS2+™, an optimized version of the blood-based NIS4® technology designed to identify at-risk MASH, with those incorporating fibrosis (FIB)-4 within the RESOLVE-IT clinical trial (NCT02704403), aiming for optimized selection of patients for LB.
View Article and Find Full Text PDFBackground: Older patients are at increased risk for at-risk NASH, defined as NASH with NAFLD activity scores (NAS) ≥4 and significant fibrosis (F ≥ 2). The aim of this study was to compare the performance of 2 new blood tests, NIS4® and NIS2+™, with FIB-4, NFS, ELF™, and alanine aminotransferase (ALT) for the diagnosis of at-risk NASH in a cohort of patients aged ≥65 years.
Methods: The clinical performance of multiple blood-based tests was assessed for their ability to detect at-risk NASH using the RESOLVE-IT diag cohort, a large population of patients with metabolic risk who were screened for potential inclusion in the RESOLVE-IT phase 3 trial.
Background & Aims: NIS4® is a blood-based non-invasive test designed to effectively rule in/rule out at-risk non-alcoholic steatohepatitis (NASH), defined as non-alcoholic fatty liver disease activity score ≥4 and significant fibrosis (stage ≥2), among patients with metabolic risk factors. Robustness of non-invasive test scores across characteristics of interest including age, type 2 diabetes mellitus, and sex, and optimised analytical aspects are critical for large-scale implementation in clinical practice. We developed and validated NIS2+™, an optimisation of NIS4®, specifically designed to improve score robustness.
View Article and Find Full Text PDFWe here review the collision risks posed by large-bodied, flocking geese to aircraft, exacerbated by recent major increases in northern hemisphere goose populations and air traffic volume. Mitigation of goose-aircraft strike risks requires knowledge of local goose movements, global goose population dynamics and ecology. Airports can minimise goose strikes by managing habitats within the airport property, applying deterrents to scare geese away and lethal control, but goose migration and movements at greater spatial scales present greater challenges.
View Article and Find Full Text PDF