Publications by authors named "C Ronning"

The generation of laser-induced periodic surface structures (LIPSS) using femtosecond lasers facilitates the engineering of material surfaces with tailored functional properties. Numerous aspects of their complex formation process are still under debate, despite intensive theoretical and experimental research in recent decades. This particularly concerns the challenge of verifying approaches based on electromagnetic effects or hydrodynamic processes by experiment.

View Article and Find Full Text PDF

We demonstrate high-harmonic generation for the time-domain observation of the electric field (HHG-TOE) and use it to measure the waveform of ultrashort mid-infrared (MIR) laser pulses interacting with ZnO thin-films or WS monolayers. The working principle relies on perturbing HHG in solids with a weak replica of the pump pulse. We measure the duration of few-cycle pulses at 3200 nm, in reasonable agreement with the results of established pulse characterization techniques.

View Article and Find Full Text PDF

Sputtering of metal surfaces can be both a beneficial phenomenon, for instance in the coating industry, or an undesired side-effect, for instant materials subjected to irradiation. While the average sputtering yields are well known in common metals, recent studies have shown that the yields can depend on the crystallographic orientation of the surface much stronger than commonly appreciated. In this study, we investigate by computational means, molecular dynamics, the sputtering of single crystalline Ag surfaces under various incoming energies.

View Article and Find Full Text PDF

Since Purcell's seminal report 75 years ago, electromagnetic resonators have been used to control light-matter interactions to make brighter radiation sources and unleash unprecedented control over quantum states of light and matter. Indeed, optical resonators such as microcavities and plasmonic antennas offer excellent control but only over a limited spectral range. Strategies to mutually tune and match emission and resonator frequency are often required, which is intricate and precludes the possibility of enhancing multiple transitions simultaneously.

View Article and Find Full Text PDF

Semiconductor nanowire lasers can be subject to modifications of their lasing threshold resulting from a variation of their environment. A promising choice is to use metallic substrates to gain access to low-volume Surface-Plasmon-Polariton (SPP) modes. We introduce a simple, yet quantitatively precise model that can serve to describe mode competition in nanowire lasers on metallic substrates.

View Article and Find Full Text PDF