Publications by authors named "C Robaglia"

Chloroplasts are the powerhouse of the plant cell, and their activity must be matched to plant growth to avoid photooxidative damage. We have identified a posttranslational mechanism linking the eukaryotic target of rapamycin (TOR) kinase that promotes growth and the guanosine tetraphosphate (ppGpp) signaling pathway of prokaryotic origins that regulates chloroplast activity and photosynthesis in particular. We find that RelA SpoT homolog 3 (RSH3), a nuclear-encoded enzyme responsible for ppGpp biosynthesis, interacts directly with the TOR complex via a plant-specific amino-terminal region which is phosphorylated in a TOR-dependent manner.

View Article and Find Full Text PDF

Oxygenic photosynthesis evolved in cyanobacteria around 3.2 giga-annum (Ga) ago and was acquired by eukaryotes starting around 1.8 Ga ago by endosymbiosis.

View Article and Find Full Text PDF

Successful subversion of translation initiation factors eIF4E determines the infection success of potyviruses, the largest group of viruses affecting plants. In the natural variability of many plant species, resistance to potyvirus infection is provided by polymorphisms at eIF4E that renders them inadequate for virus hijacking but still functional in translation initiation. In crops where such natural resistance alleles are limited, the genetic inactivation of eIF4E has been proposed for the engineering of potyvirus resistance.

View Article and Find Full Text PDF

Background: Studies have shown that the consumption of apples has a beneficial effect on cardiovascular diseases and some cancers, largely as a result of their micronutrient and phytoconstituent contents. Apple peel not only contains more polyphenols than the flesh, but also is likely to contain pesticide residues. The present study aimed to compare the contents of certain micronutrients and residual pesticide levels in peeled and unpeeled apples.

View Article and Find Full Text PDF

Living organisms possess many mechanisms to sense nutrients and favorable conditions, which allow them to grow and develop. Photosynthetic organisms are very diverse, from green unicellular algae to multicellular flowering plants, but most of them are sessile and thus unable to escape from the biotic and abiotic stresses they experience. The Target of Rapamycin (TOR) signaling pathway is conserved in all eukaryotes and acts as a central regulatory hub between growth and extrinsic factors, such as nutrients or stress.

View Article and Find Full Text PDF