This study investigated the stabilization mechanism, storage stability, and in vitro digestion characteristics of oil-in-water fish oil emulsions stabilized by β-Lg modified through enzymatic hydrolysis, glycation, and fibrillation. The stabilization mechanism was elucidated by comparing droplet size, ζ-potential, interfacial protein thickness, and microstructure. Results showed that β-Lg modified through these combined processes formed a three-dimensional network, providing superior stabilization, while other modified proteins stabilized emulsions via surface adsorption.
View Article and Find Full Text PDFThis is a review of mucus, and its principal component, mucins, in oral processing; it examines oral processing from the viewpoint of mucins being integral functional constituents of the food after the latter's insertion into the mouth. Under this light, mucins are treated as an omni-present functional ingredient. The chemical physics of the bolus formation is examined, focused on the role of mucins in the process.
View Article and Find Full Text PDFProtein molecules such as soy protein isolate (SPI) and egg white (EW) are highly promising materials for developing hydrogels (especially micro/nanogels) for the encapsulation, protection and controlled release of bioactive substances. However, there are limited numbers of studies on the formulation and behavior of these two gelling materials as microgels. In our study, composite microgels of SPI and EW at various component ratios and pH conditions have been successfully prepared; the rheological behavior and structural properties of these composite microgels before, during and after digestion have been analyzed; and their performance in curcumin encapsulation and gastrointestinal delivery has also been investigated.
View Article and Find Full Text PDFCannabis seed oil oleogel structured with Glycerol Monostearate (20% /) was mixed with xanthan gum hydrogel (2% /) at different ratios ranging from 0% / hydrogel to 75% / hydrogel, using a syringe-to-syringe apparatus, for the preparation of 3D-printable food inks. This process enabled the simultaneous blend of oleogel and hydrogel phases and the incorporation of air in a reproducible and accurate manner. The printability of bigel inks with different mass ratios was evaluated by using a conventional benchtop food 3D printer.
View Article and Find Full Text PDF3D-printed dosage forms comprised of Carbopol and Eudragit were fabricated through semi-solid extrusion, combining Enoxaparin (Enox) and the permeation enhancer SNAC in a single-step process without subsequent post-processing. Inks were characterized using rheology and Fourier-transform infrared (FTIR) spectroscopy. The stability of Enox in the fabricated dosage forms was assessed by means of Nuclear Magnetic Resonance (NMR) and Circular Dichroism (CD) analysis.
View Article and Find Full Text PDF