Publications by authors named "C Ribalta"

Marathon running significantly increases breathing volumes and, consequently, air pollution inhalation doses. This is of special concern for elite athletes who ventilate at very high rates. However, race organizers and sport governing bodies have little guidance to support events scheduling to protect runners.

View Article and Find Full Text PDF

Herein, a Safe-and-Sustainable-by-Design (SSbD) screening strategy on four different inorganic aerogel mats and two conventional mineral wools for ranking purposes is demonstrated. Given that they do not consist of particles, the release is first simulated, addressing three occupational exposure scenarios, realistic for their intended use as building insulators. No exposure to consumers nor to the environment is foreseen in the use phase, however, aerosols may be released during mat installation, posing an inhalation risk for workers.

View Article and Find Full Text PDF

Several exposure assessment models use dustiness as an input parameter for scaling or estimating exposure during powder handling. Use of different dustiness methods will result in considerable differences in the dustiness values as they are based on different emission generation principles. EN17199:2019 offers 4 different dustiness test methods considering different dust release scenarios (e.

View Article and Find Full Text PDF

The use of modelling tools in the occupational hygiene community has increased in the last years to comply with the different existing regulations. However, limitations still exist mainly due to the difficulty to obtain certain key parameters such as the emission rate, which in the case of powder handling can be estimated using the dustiness index (DI). The goal of this work is to explore the applicability and usability of the DI for emission source characterization and occupational exposure prediction to particles during nanomaterial powder handling.

View Article and Find Full Text PDF

One- and two-box models have been pointed out as useful tools for modelling indoor particle exposure. However, model performance still needs further testing if they are to be implemented as trustworthy tools for exposure assessment. The objective of this work is to evaluate the performance, applicability and reproducibility of one- and two-box models on real-world industrial scenarios.

View Article and Find Full Text PDF