Neurological and psychiatric disorders contribute significantly to the global disease burden, adversely affecting the quality of life for both patients and their families. Impaired glutamatergic signaling is considered to be a major cause for most of the neurological and psychiatric disorders. Glutamate receptors are over activated in excitotoxic conditions, leading to dysregulation of Ca homeostasis, triggering the production of free radicals and oxidative stress, mitochondrial dysfunction and eventually cell death.
View Article and Find Full Text PDFDeveloping drugs for Alzheimer's disease (AD) is an extremely challenging task due to its devastating pathology. Previous studies have indicated that natural compounds play a crucial role as lead molecules in the development of drugs. Even though, there are remarkable technological advancements in the isolation and synthesis of natural compounds, the targets for many of them are still unknown.
View Article and Find Full Text PDFBiochem Biophys Res Commun
October 2022
Phospholipase A2 (PLA2) is a key enzyme involved in the formation of pro-inflammatory mediators like eicosanoids. Inhibition of PLA2 is regarded as one of the effective methods of controlling inflammation. The present study investigated the binding potentials of three natural compounds, rosmarinic acid (RA), capsaicin (CAP), and curcumin (CUR) by means of in silico and in vitro methods.
View Article and Find Full Text PDFThe complex and multifactorial nature of neuropsychiatric diseases demands multi-target drugs that can intervene with various sub-pathologies underlying disease progression. Targeting the impairments in cholinergic and glutamatergic neurotransmissions with small molecules has been suggested as one of the potential disease-modifying approaches for Alzheimer's disease (AD). Tacrine, a potent inhibitor of acetylcholinesterase (AChE) is the first FDA approved drug for the treatment of AD.
View Article and Find Full Text PDF