The paper presents an approach for overcoming modeling problems of typical life science applications with partly unknown mechanisms and lacking quantitative data: A model family of reaction-diffusion equations is built up on a mesoscopic scale and uses classes of feasible functions for reaction and taxis terms. The classes are found by translating biological knowledge into mathematical conditions and the analysis of the models further constrains the classes. Numerical simulations allow comparing single models out of the model family with available qualitative information on the solutions from observations.
View Article and Find Full Text PDFUnlabelled: Screening assays are used to test if one or more microbes suppress a pathogen of interest. In the presence of more than one microbe, the screening method must be able to accurately distinguish viable pathogen cells from non-viable and non-target microbes in a sample. Current screening methods are time-consuming and require special reagents to detect viability in mixed microbial communities.
View Article and Find Full Text PDFIn many landscapes, successful re-establisment of plant populations depends on the presence of diaspores, either near or directly beneath sites to be restored. The soil seed bank is, therefore, an important part of ecosystem resilience and a vital pillar for regeneration of genetic diversity in many plant populations. However, regeneration from the soil seed bank and the siubsequent restoration can only be considered successful when genetic diversity of restored populations is not eroded nor genetic differentiation inflated.
View Article and Find Full Text PDFGenome editing tools, through the disruption of an organism's native genetic material or the introduction of non-native DNA, facilitate functional investigations to link genotypes to phenotypes. Transposons have been instrumental genetic tools in microbiology, enabling genome-wide, randomized disruption of genes and insertions of new genetic elements. Due to this randomness, identifying and isolating particular transposon mutants (i.
View Article and Find Full Text PDFMetabolite exchange within marine microbial communities transfers carbon and other major elements through global cycles and forms the basis of microbial interactions. Yet lack of gene annotations and concern about the quality of existing ones remain major impediments to revealing currencies of carbon flux. We employed an arrayed mutant library of the marine bacterium Ruegeria pomeroyi DSS-3 to experimentally annotate substrates of organic compound transporter systems, using mutant growth and compound drawdown analyses to link transporters to their cognate substrates.
View Article and Find Full Text PDF