Small-field dosimetry used in advance treatment technologies poses challenges due to loss of lateral charged particle equilibrium (LCPE), occlusion of the primary photon source, and the limited choice of suitable radiation detectors. These challenges greatly influence dosimetric accuracy. Many high-profile radiation incidents have demonstrated a poor understanding of appropriate methodology for small-field dosimetry.
View Article and Find Full Text PDFThis paper presents a practical method for converting dose measured with thermoluminescent dosimeters (TLD) to dose in lung and bone for 6 MV and 15 MV photon beams. Monte Carlo (MC) simulations and Burlin cavity theory calculations were performed to calculate [Formula: see text], the dose-to-TLD to dose-to-medium conversion factor. A practical method was proposed for converting TLD-measured-dose to dose-in-medium using the TLD dose calibration in water and [Formula: see text] dose-to-medium to dose-to-water conversion factor.
View Article and Find Full Text PDFThermoluminescent dosimeters (TLD) and optically stimulated luminescent dosimeters (OSLD) are practical, accurate, and precise tools for point dosimetry in medical physics applications. The charges of Task Group 191 were to detail the methodologies for practical and optimal luminescence dosimetry in a clinical setting. This includes: (a) to review the variety of TLD/OSLD materials available, including features and limitations of each; (b) to outline the optimal steps to achieve accurate and precise dosimetry with luminescent detectors and to evaluate the uncertainty induced when less rigorous procedures are used; (c) to develop consensus guidelines on the optimal use of luminescent dosimeters for clinical practice; and (d) to develop guidelines for special medically relevant uses of TLDs/OSLDs such as mixed photon/neutron field dosimetry, particle beam dosimetry, and skin dosimetry.
View Article and Find Full Text PDFManaging radiotherapy patients with implanted cardiac devices (implantable cardiac pacemakers and implantable cardioverter-defibrillators) has been a great practical and procedural challenge in radiation oncology practice. Since the publication of the AAPM TG-34 in 1994, large bodies of literature and case reports have been published about different kinds of radiation effects on modern technology implantable cardiac devices and patient management before, during, and after radiotherapy. This task group report provides the framework that analyzes the potential failure modes of these devices and lays out the methodology for patient management in a comprehensive and concise way, in every step of the entire radiotherapy process.
View Article and Find Full Text PDFMeasurements of small fields continue to be a clinical challenge despite the recent work done to identify their characteristics. Due to this challenge, many physicists use representative data supplied by their vendors to verify their own measurements for small field output factors. However, with recent guidelines being released in IAEA TRS 483, the question remains if this representative data provides an accurate representation for small field dosimetry.
View Article and Find Full Text PDF