Publications by authors named "C Ratnam"

This study investigates the thermal effect of supercritical water treatment at different temperatures (150, 175, 200 °C) and semi-vacuum state (-0.08 MPa) on graphite flakes which are then incorporated into nylon 610. The treatment is deemed to increase the surface activity of nanofillers through the formation of oxygen-containing functional groups.

View Article and Find Full Text PDF

In this study, water at high temperatures (150, 175, 200 °C) and in a vacuum state (-0.1 MPa) was applied to graphite nanosheets to enhance surface activity to promote the formation of oxygen-containing functional groups through supercritical water treatment. Nylon 610 nanocomposites (with treated or untreated nanosheets as nanofillers) were then synthesized using interfacial polymerization.

View Article and Find Full Text PDF

This work was conducted to investigate the effect of carbon nanotube (CNT) on the mechanical-physico properties of the electron beam irradiated polyvinyl alcohol (PVOH) blends. The increasing of CNT amount up to 1.5 part per hundred resin (phr) has gradually improved tensile strength and Young's modulus of PVOH/CNT nanocomposites due to effective interlocking effect of CNT particles in PVOH matrix, as evident in SEM observation.

View Article and Find Full Text PDF

Carbon can form different allotropes due to its tetravalency. Different forms of carbon such as carbon nanotubes (CNTs), carbon nanofibers, graphene, fullerenes, and carbon black can be used as nanofillers in order to enhance the properties of polymer nanocomposites. These carbon nanomaterials are of interest in nanocomposites research and other applications due to their excellent properties, such as high Young's Modulus, tensile strength, electrical conductivity, and specific surface area.

View Article and Find Full Text PDF

We studied the reinforcing effects of treated and untreated nanohydroxyapatite (NHA) on poly-lactic acid (PLA). The NHA surface was treated with three different types of chemicals; 3-aminopropyl triethoxysilane (APTES), sodium -dodecyl sulfate (SDS) and polyethylenimine (PEI). The nanocomposite samples were prepared using melt mixing techniques by blending 5 wt% untreated NHA and 5 wt% surface-treated NHA (mNHA).

View Article and Find Full Text PDF