Publications by authors named "C Radecke"

Background: Beta-(1,3)(1,6)-D-glucan is a complex polysaccharide, which is found in the cell wall of various fungi, yeasts, bacteria, algae, barley, and oats and has immunomodulatory, anticancer and antiviral effects. In the present study, we investigated the effect of beta-(1,3)(1,6)-D-glucan derived from yeast on the proliferation of primary NK cells and breast cancer cell lines in 2D and 3D models, and on the cytotoxicity of primary NK cells against breast cancer cell lines in 2D and 3D models.

Methods: In this study, we investigated the effects of different concentrations of yeast-derived beta-(1→3)(1→6)-D-glucan on the proliferation and cytotoxicity of human NK cells and breast cancer cell lines in 2D and 3D models using the XTT cell proliferation assay and the CellTiter-Glo® 2.

View Article and Find Full Text PDF

Colorectal carcinoma (CRC) presents a formidable medical challenge, demanding innovative therapeutic strategies. Chimeric antigen receptor (CAR) natural killer (NK) cell therapy has emerged as a promising alternative to CAR T-cell therapy for cancer. A suitable tumor antigen target on CRC is carcinoembryonic antigen (CEA), given its widespread expression and role in tumorigenesis and metastasis.

View Article and Find Full Text PDF

There is a medical need to develop new and effective therapies against triple-negative breast cancer (TNBC). Chimeric antigen receptor (CAR) natural killer (NK) cells are a promising alternative to CAR-T cell therapy for cancer. A search for a suitable target in TNBC identified CD44v6, an adhesion molecule expressed in lymphomas, leukemias and solid tumors that is implicated in tumorigenesis and metastases.

View Article and Find Full Text PDF

Immunostimulatory regimens are a game changer in the fight against cancer, but still only a minority of patients achieve clinical benefit. Combination with immunomodulatory drugs and agents converting otherwise non-immunogenic forms of cell death into bona fide "immunogenic cell death" (ICD) could improve the efficacy of these novel therapies. The aim of our study was to investigate conventional Amphotericin B (AmB) as an enhancer of antitumor immune responses.

View Article and Find Full Text PDF