Publications by authors named "C Racioppi"

The microtubule-associated protein tau is an abundant component of neurons of the central nervous system. In Alzheimer's disease and other neurodegenerative tauopathies, tau is found hyperphosphorylated and aggregated in neurofibrillary tangles. To obtain a better understanding of the cellular perturbations that initiate tau pathogenesis, we performed a CRISPR-Cas9 screen for genetic modifiers that enhance tau aggregation.

View Article and Find Full Text PDF

GATA4/5/6 transcription factors play essential, conserved roles in heart development. To understand how GATA4/5/6 modulates the mesoderm-to-cardiac fate transition, we labeled, isolated, and performed single-cell gene expression analysis on cells that express at precardiac time points spanning zebrafish gastrulation to somitogenesis. We found that most mesendoderm-derived lineages had dynamic expression.

View Article and Find Full Text PDF

Many species in the tunicate family Molgulidae have independently lost their swimming larval form and instead develop as tailless, immotile larvae. These larvae do not develop structures that are essential for swimming such as the notochord, otolith, and tail muscles. However, little is known about neural development in these nonswimming larvae.

View Article and Find Full Text PDF

During embryogenesis, chromatin accessibility profiles control lineage-specific gene expression by modulating transcription, thus impacting multipotent progenitor states and subsequent fate choices. Subsets of cardiac and pharyngeal/head muscles share a common origin in the cardiopharyngeal mesoderm, but the chromatin landscapes that govern multipotent progenitors competence and early fate choices remain largely elusive. Here, we leveraged the simplicity of the chordate model to profile chromatin accessibility through stereotyped transitions from naive + mesoderm to distinct fate-restricted heart and pharyngeal muscle precursors.

View Article and Find Full Text PDF

Cardiovascular lineages develop together with kidney, smooth muscle, and limb connective tissue progenitors from the lateral plate mesoderm (LPM). How the LPM initially emerges and how its downstream fates are molecularly interconnected remain unknown. Here, we isolate a pan-LPM enhancer in the zebrafish-specific draculin (drl) gene that provides specific LPM reporter activity from early gastrulation.

View Article and Find Full Text PDF