Aims/hypothesis: To overcome the donor shortage in the treatment of advanced type 1 diabetes by islet transplantation, human embryonic stem cells (hESCs) show great potential as an unlimited alternative source of beta cells. hESCs may have immune privileged properties and it is important to determine whether these properties are preserved in hESC-derived cells.
Methods: We comprehensively investigated interactions of both innate and adaptive auto- and allo-immunity with hESC-derived pancreatic progenitor cells and hESC-derived endocrine cells, retrieved after in-vivo differentiation in capsules in the subcutis of mice.
Transplantation of islet allografts into type 1 diabetic recipients usually requires multiple pancreas donors to achieve insulin independence. This adds to the challenges of immunological monitoring of islet transplantation currently relying on surrogate immune markers in peripheral blood. We investigated donor origin and infiltration of islets transplanted in the liver of a T1D patient who died of hemorrhagic stroke 4 months after successful transplantation with two intraportal islet grafts combining six donors.
View Article and Find Full Text PDFBackground: Islet cell transplantation holds a potential cure for type 1 diabetes, but many islet recipients do not reach long-lasting insulin independence. In this exploratory study, we investigated whether serum cytokines, chemokines and adipokines are associated with the clinical outcome of islet transplantation.
Methods: Thirteen islet transplant patients were selected on basis of good graft function (reaching insulin independence) or insufficient engraftment (insulin requiring) from our cohort receiving standardized grafts and immune suppressive therapy.
Aims/hypothesis: Genetically engineered human beta cell lines provide a novel source of human beta cells to study metabolism, pharmacology and beta cell replacement therapy. Since the immune system is essentially involved in beta cell destruction in type 1 diabetes and after beta cell transplantation, we investigated the interaction of human beta cell lineswith the immune system to resolve their potential for immune intervention protocol studies.
Methods: Human pancreatic beta cell lines (EndoC-βH1 and ECi50) generated by targeted oncogenesis in fetal pancreas were assessed for viability after innate and adaptive immune challenges.
Persistent complete donor chimerism is an important clinical indicator for remissions of hematological malignancies after HLA-matched allogeneic stem cell transplantation (SCT). However, the mechanisms mediating the persistence of complete donor chimerism are poorly understood. The frequent coincidence of complete donor chimerism with graft-versus-leukemia effects and graft-versus-host disease suggests that immune responses against minor histocompatibility antigens (mHags) are playing an important role in suppressing the host hematopoiesis after allogeneic SCT.
View Article and Find Full Text PDF