Tungsten has recently emerged as a potential toxicant and is known to heterogeneously deposit in bone as reactive polytungstates. Zinc, which accumulates in regions of bone remodeling, also has a heterogenous distribution in bone. Determining the local concentrations of these metals will provide valuable information about their mechanisms of uptake and action.
View Article and Find Full Text PDFTungsten is incorporated in many industrial goods, military applications and medical devices due to its ability to impart flexibility, strength and conductance to materials. Emerging evidence has questioned the safety of tungsten exposure as studies have demonstrated it can promote tumour formation, induce pulmonary disease and alter immune function. Although tungsten is excreted from the body it can accumulate in certain organs such as the brain, colon, liver, kidneys, spleen and bones, where most of the bioaccumulation occurs.
View Article and Find Full Text PDFSynchrotron radiation micro-X-ray fluorescence (SR-μXRF) is a powerful elemental mapping technique that has been used to map tungsten and zinc distribution in bone tissue. However, the heterogeneity of the bone samples along with overlap of the tungsten L-edge with the zinc K-edge signals complicates SR-μXRF data analysis, introduces minor artefacts into the resulting element maps, and decreases image sensitivity and resolution. To confirm and more carefully delineate these SR-μXRF results, we have employed laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) to untangle the problem created by the K/L-edge overlap of the tungsten/zinc pair.
View Article and Find Full Text PDFIn an effort to provide insight into the molecular origins of the (2)H double quantum filtered (DQF) NMR signal observed in connective tissue, specifically spinal disc tissue, (2)H multiple quantum filtered (MQF) NMR spectroscopy is used to study the structure and dynamics of D2O in collagen as a function of hydration. Residual quadrupolar coupling constants are measured and decrease from 3500 to 20 Hz while T2 relaxation times increase from 0.65 to 20 ms as hydration increases.
View Article and Find Full Text PDF