Background: Sex differences in adult diffuse glioma (ADG) are well-established clinically, yet the underlying molecular mechanisms remain inadequately understood. Here, we aim to reveal molecular features and cellular compositions unique to each sex in ADG to comprehend the role of sex in disease etiology.
Methods: We quantified sex differences in transcriptome of ADG using multiple independent glioma patient datasets.
Recent studies have identified increasing levels of nanoplastic pollution in the environment. Here, we find that anionic nanoplastic contaminants potently precipitate the formation and propagation of α-synuclein protein fibrils through a high-affinity interaction with the amphipathic and non-amyloid component (NAC) domains in α-synuclein. Nanoplastics can internalize in neurons through clathrin-dependent endocytosis, causing a mild lysosomal impairment that slows the degradation of aggregated α-synuclein.
View Article and Find Full Text PDFRecent studies have identified increasing levels of nanoplastic pollution in the environment. Here we find that anionic nanoplastic contaminants potently precipitate the formation and propagation of α-synuclein protein fibrils through a high-affinity interaction with the amphipathic and non-amyloid component (NAC) domains in α-synuclein. Nanoplastics can internalize in neurons through clathrin-dependent endocytosis, causing a mild lysosomal impairment that slows the degradation of aggregated α-synuclein.
View Article and Find Full Text PDFObjectives: This report describes an unusual case of a multilocular idiopathic bone cavity (IBC) that presented as a botryoid odontogenic cyst situated between the mandibular lateral incisor and canine in an older adult.
Background: The IBC represents an intraosseous concavity that appears radiographically as a unilocular or multilocular radiolucent lesion found in various skeletal sites, including the jaw. Atypical cases of gnathic IBC have not been appreciated in the gerodontologic literature.
Alcohol use disorder is complex and multifaceted, involving the coordination of multiple signaling systems across numerous brain regions. Previous work has indicated that both the insular cortex and dynorphin (DYN)/kappa opioid receptor (KOR) systems contribute to excessive alcohol use. More recently, we identified a microcircuit in the medial aspect of the insular cortex that signals through DYN/KOR.
View Article and Find Full Text PDF