Publications by authors named "C R McCleary"

Mesial temporal lobe epilepsy (MTLE) is a syndromic disorder presenting with seizures and cognitive comorbidities. Although seizure etiology is increasingly understood, the pathophysiological mechanisms contributing to cognitive decline and epilepsy progression remain less recognized. We have previously shown that adult hippocampal neurogenesis dramatically declines in MTLE patients with increased disease duration.

View Article and Find Full Text PDF

Concurrent localized radiotherapy and systemic chemotherapy are standards of care for many cancers, but these treatment regimens cause severe adverse effects in many patients. Herein, we report the design of a mixed-ligand nanoscale metal-organic framework (nMOF) with the ability to simultaneously enhance radiotherapeutic effects and trigger the release of a potent chemotherapeutic under X-ray irradiation. We synthesized a new functional quaterphenyl dicarboxylate ligand conjugated with SN38 (HQP-SN) via a hydroxyl radical-responsive covalent linkage.

View Article and Find Full Text PDF

School environments may impact elementary school students' attachment levels to school as well as their mental and emotional well-being. Yet investments in recess/play infrastructure lag commitments to academic resources, particularly in developing countries. The main objective was to examine the impact of installing playground equipment, in the school yard, on students' attitudes toward school, peers, and the capacity to play of elementary-school children in an underserved, inner-city school in Chennai, India.

View Article and Find Full Text PDF

As heavy-metal-based nanoscale metal-organic frameworks (nMOFs) are excellent radiosensitizers for radiotherapy via enhanced energy deposition and reactive oxygen species (ROS) generation, we hypothesize that nMOFs with covalently conjugated and X-ray triggerable prodrugs can harness the ROS for on-demand release of chemotherapeutics for chemoradiotherapy. Herein, we report the design of a novel nMOF, Hf-TP-SN, with an X-ray-triggerable 7-ethyl-10-hydroxycamptothecin (SN38) prodrug for synergistic radiotherapy and chemotherapy. Upon X-ray irradiation, electron-dense Hf secondary building units serve as radiosensitizers to enhance hydroxyl radical generation for the triggered release of SN38 via hydroxylation of the 3,5-dimethoxylbenzyl carbonate followed by 1,4-elimination, leading to 5-fold higher release of SN38 from Hf-TP-SN than its molecular counterpart.

View Article and Find Full Text PDF

High-Z metal-based nanoscale metal-organic frameworks (nMOFs) with photosensitizing ligands can enhance radiation damage to tumors via a unique radiotherapy-radiodynamic therapy (RT-RDT) process. Here we report Monte Carlo (MC) simulation-guided design of a Th-based nMOF built from Th -oxo secondary building units and 5,15-di(p-benzoato)porphyrin (DBP) ligands, Th-DBP, for enhanced RT-RDT. MC simulations revealed that the Th-lattice outperformed the Hf-lattice in radiation dose enhancement owing to its higher mass attenuation coefficient.

View Article and Find Full Text PDF