Background: Conventional mammography remains the primary imaging modality for state-of-the-art breast imaging practice and its benefit (both on diagnostic and screening) was largely reported. In mammography, the typical Mean Glandular Dose (MGD) from X-ray radiation to the breast spans, on average, from 1 to 10 mGy, depending on breast thicknesses, percentage of fibroglandular tissue, and on the examination purpose.
Methods: The aim of this narrative review is to describe the extent of radiation risk in X-ray breast imaging and discuss the main steps and parameters (e.
Objectives: This study aims to demonstrate reduced iodine contrast media (CM) in routine abdominal CT scans in portal venous phase (PVP) using a photon-counting detector CT (PCD-CT) compared to total body weight (TBW) and kV-adapted CM injection protocols on a state-of-the-art energy-integrating detector CT (EID-CT) while maintaining sufficient image quality (IQ).
Materials And Methods: Consecutive contrast-enhanced abdominal PVP CT scans from an EID-CT (Nov 2022-March 2024) and a PCD-CT (Sep 2023-Dec 2023) were compared. CM parameters (total iodine load (TIL), iodine delivery rate (IDR) and dosing factor (DF)) were reported.
Background: Since 2011, the International Commission on Radiological Protection (ICRP) has recommended an annual eye lens dose limit of 20 mSv for radiation workers, averaged over 5 years, with no year exceeding 50 mSv. However, limited research has been conducted on dose rate conversion coefficients (DCCs) for direct contamination of the eye.
Purpose: This study aimed to accurately determine DCCs for the eye lens and cornea for ocular contamination with radionuclides used in nuclear medicine.
Objectives: The aim of this study is to improve the reliability of subjective IQ assessment using a pairwise comparison (PC) method instead of a Likert scale method in abdominal CT scans.
Methods: Abdominal CT scans (single-center) were retrospectively selected between September 2019 and February 2020 in a prior study. Sample variance in IQ was obtained by adding artificial noise using dedicated reconstruction software, including reconstructions with filtered backprojection and varying iterative reconstruction strengths.
Objective: To characterize the use and impact of radiation dose reduction techniques in actual practice for routine abdomen CT.
Methods: We retrospectively analyzed consecutive routine abdomen CT scans in adults from a large dose registry, contributed by 95 hospitals and imaging facilities. Grouping exams into deciles by, first, patient size, and second, size-adjusted dose length product (DLP), we summarized dose and technical parameters and estimated which parameters contributed most to between-protocols dose variation.