Hydrological transformations induced by climate warming are causing Arctic annual fluvial energy to shift from skewed (snowmelt-dominated) to multimodal (snowmelt- and rainfall-dominated) distributions. We integrated decade-long hydrometeorological and biogeochemical data from the High Arctic to show that shifts in the timing and magnitude of annual discharge patterns and stream power budgets are causing Arctic material transfer regimes to undergo fundamental changes. Increased late summer rainfall enhanced terrestrial-aquatic connectivity for dissolved and particulate material fluxes.
View Article and Find Full Text PDFClimate warming and changing precipitation patterns have thermally (active layer deepening) and physically (permafrost-thaw related mass movements) disturbed permafrost-underlain watersheds across much of the Arctic, increasing the transfer of dissolved and particulate material from terrestrial to aquatic ecosystems. We examined the multiyear (2006-2017) impact of thermal and physical permafrost disturbances on all of the major components of fluvial flux. Thermal disturbances increased the flux of dissolved organic carbon (DOC), but localized physical disturbances decreased multiyear DOC flux.
View Article and Find Full Text PDF