The dynamic susceptibility contrast (DSC) MRI measures of relative cerebral blood volume (rCBV) play a central role in monitoring therapeutic response and disease progression in patients with gliomas. Previous investigations have demonstrated promise of using rCBV in classifying tumor grade, elucidating tumor viability after therapy, and differentiating pseudoprogression and pseudoresponse. However, the quantification and reproducibility of rCBV measurements across patients, devices, and software remain a critical barrier to routine or clinical trial use of longitudinal DSC MRI in patients with gliomas.
View Article and Find Full Text PDFPurpose: The aim of this study was to provide measurements from and investigate the repeatability of diffusion kurtosis tensor parameters in the muscles of the lower legs.
Methods: Test-retest acquisition of a kurtosis tensor sequence was performed in 13 healthy volunteers. Quantitative kurtosis tensor parameters were derived, and repeatability of each parameter was evaluated by muscle group and over the whole muscle through intraclass correlation coefficient (ICC) and within-subject coefficient of variation (wsCV).
Elemental imaging in laser-induced breakdown spectroscopy is usually performed by placing laser shots adjacent to each other on the sample surface without spatial overlap. Seeing that signal intensity is directly related to the amount of ablated material, this restricts either spatial resolution (for a given excitation efficiency) or sensitivity (when reducing the laser spot size). The experimental applicability of a concept involving the spatial overlapping of shots on the sample surface is investigated and compared to the conventional approach.
View Article and Find Full Text PDFBackground And Purpose: DSC-MR imaging can be used to generate fractional tumor burden (FTB) maps via application of relative CBV thresholds to spatially differentiate glioblastoma recurrence from posttreatment radiation effects (PTRE). Image-localized histopathology was previously used to validate FTB maps derived from a reference DSC-MR imaging protocol by using preload, a moderate flip angle (MFA, 60°), and postprocessing leakage correction. Recently, a DSC-MR imaging protocol with a low flip angle (LFA, 30°) with no preload was shown to provide leakage-corrected relative CBV (rCBV) equivalent to the reference protocol.
View Article and Find Full Text PDF