Publications by authors named "C Prezzi"

Elevated levels of methionine in blood characterize the hypermethioninemia, which may have genetic or non-genetic origin, as for example from high protein diet. Born rats from hypermethioninemic mothers presented cerebral oxidative stress, inhibition of Na,K-ATPase, memory deficit and ultrastructure cerebral changes. Melatonin is a hormone involved in circadian rhythm and has antioxidant effects.

View Article and Find Full Text PDF

Guanidinoacetate Methyltransferase deficiency is an inborn error of metabolism that results in decreased creatine and increased guanidinoacetate (GAA) levels. Patients present neurological symptoms whose mechanisms are unclear. We investigated the effects of an intrastriatal administration of 10 μM of GAA (0.

View Article and Find Full Text PDF

Kynurenic acid (KYNA) and quinolinic acid (QUIN) are metabolites produced in the degradation of tryptophan and have important neurological activities. KYNA/QUIN ratio changes are known to be associated with central nervous system disorders, such Alzheimer, Parkinson, and Huntington diseases. In the present study, we investigate the ability of KYNA in prevent the first events preceding QUIN-induced neurodegeneration in striatal slices of rat.

View Article and Find Full Text PDF

Homocysteine is a sulfur-containing amino acid derived from methionine metabolism. When plasma homocysteine levels exceed 10-15 μM, there is a condition known as hyperhomocysteinemia, which occur as a result of an inborn error of methionine metabolism or by non-genetic causes. Mild hyperhomocysteinemia is considered a risk factor for development of neurodegenerative diseases.

View Article and Find Full Text PDF

Hypoxanthine is the major purine involved in the salvage pathway of purines in the brain. High levels of hypoxanthine are characteristic of Lesch-Nyhan Disease. Since hypoxanthine is a purine closely related to ATP formation, the aim of this study was to investigate the effect of intrastriatal hypoxanthine administration on neuroenergetic parameters (pyruvate kinase, succinate dehydrogenase, complex II, cytochrome c oxidase, and ATP levels) and mitochondrial function (mitochondrial mass and membrane potential) in striatum of rats.

View Article and Find Full Text PDF