Publications by authors named "C Prebois"

We recently reported that BAG6/BAT3 (BCL2-associated athanogene 6) is essential for basal and starvation-induced autophagy in E18.5 bag6(-/-) mouse embryos and in mouse embryonic fibroblasts (MEFs) through the modulation of the EP300/p300-dependent acetylation of TRP53 and autophagy-related (ATG) proteins. We observed that BAG6 increases TRP53 acetylation during starvation and pro-autophagic TRP53-target gene expression.

View Article and Find Full Text PDF

Autophagy is regulated by posttranslational modifications, including acetylation. Here we show that HLA-B-associated transcript 3 (BAT3) is essential for basal and starvation-induced autophagy in embryonic day 18.5 BAT3(-/-) mouse embryos and in mouse embryonic fibroblasts (MEFs) through the modulation of p300-dependent acetylation of p53 and ATG7.

View Article and Find Full Text PDF

The aspartic protease cathepsin D, a poor prognostic indicator of breast cancer, is abundantly secreted as procathepsin D by human breast cancer cells and self-activates at low pH in vitro, giving rise to catalytically active cathepsin D. Due to a lower extracellular pH in tumor microenvironments compared to normal tissues, cathepsin D may cleave pathophysiological substrates contributing to cancer progression. Here, we show by yeast 2-hybrid and degradomics analyses that cystatin C, the most potent natural secreted inhibitor of cysteine cathepsins, both binds to and is a substrate of extracellular procathepsin D.

View Article and Find Full Text PDF

The aspartic protease cathepsin-D (cath-D) is a marker of poor prognosis in breast cancer that is overexpressed and hypersecreted by human breast cancer cells. Secreted pro-cath-D binds to the extracellular domain of the β-chain of the LDL receptor-related protein-1 (LRP1) in fibroblasts. The LRP1 receptor has an 85-kDa transmembrane β-chain and a noncovalently attached 515-kDa extracellular α-chain.

View Article and Find Full Text PDF

The aspartic protease cathepsin-D (cath-D) is overexpressed by human epithelial breast cancer cells and is closely correlated with poor prognosis in breast cancer. The adipocyte is one of the most prominent cell types in the tumor-microenvironment of breast cancer, and clinical studies have shown that obesity increases the incidence of breast cancer. Here, we provide the first evidence that cath-D expression is up-regulated in adipose tissue from obese human beings, as well as in adipocytes from the obese C57BI6/J mouse.

View Article and Find Full Text PDF