Mutated KRAS serves as the oncogenic driver in 30% of non-small cell lung cancers (NSCLCs) and is associated with metastatic and therapy-resistant tumors. Focal Adhesion Kinase (FAK) acts as a mediator in sustaining KRAS-driven lung tumors, and although FAK inhibitors are currently undergoing clinical development, clinical data indicated that their efficacy in producing long-term anti-tumor responses is limited. Here we revealed two FAK interactors, extracellular-signal-regulated kinase 5 (ERK5) and cyclin-dependent kinase 5 (CDK5), as key players underlying FAK-mediated maintenance of KRAS mutant NSCLC.
View Article and Find Full Text PDFUnlabelled: Various lines of investigation support a signaling interphase shared by receptor tyrosine kinases and the DNA damage response. However, the underlying network nodes and their contribution to the maintenance of DNA integrity remain unknown. We explored MET-related metabolic pathways in which interruption compromises proper resolution of DNA damage.
View Article and Find Full Text PDFThe DNA damage response (DDR) is intertwined with signaling pathways downstream of oncogenic receptor tyrosine kinases (RTKs). To drive research into the application of targeted therapies as radiosensitizers, a better understanding of this molecular crosstalk is necessary. We present here the characterization of a previously unreported MET RTK phosphosite, Serine 1016 (S1016) that represents a potential DDR-MET interface.
View Article and Find Full Text PDFBackground: KRAS is the predominant oncogene mutated in pancreatic ductal adenocarcinoma (PDAC), the fourth cause of cancer-related deaths worldwide. Mutant KRAS-driven tumors are metabolically programmed to support their growth and survival, which can be used to identify metabolic vulnerabilities. In the present study, we aimed to understand the role of extracellularly derived fatty acids in KRAS-driven pancreatic cancer.
View Article and Find Full Text PDFPancreatic ductal adenocarcinoma (PDAC) is characterized by marked fibrosis and low immunogenicity, features that are linked to treatment resistance and poor clinical outcomes. Therefore, understanding how PDAC regulates the desmoplastic and immune stromal components is of great clinical importance. We found that acyl-CoA synthetase long-chain 3 (ACSL3) is up-regulated in PDAC and correlates with increased fibrosis.
View Article and Find Full Text PDF