Voltage-gated sodium channels (VGSCs) are the target for many therapies. Variation in membrane potential occurs throughout the cell cycle, yet little attention has been devoted to the role of VGSCs and Na,K-ATPases. We hypothesized that in addition to doubling DNA and cell membrane in anticipation of cell division, there should be a doubling of VGSCs and Na,K-ATPase compared to non-dividing cells.
View Article and Find Full Text PDFEnterotoxigenic Escherichia coli (ETEC) remain a major cause of diarrheal mortality and morbidity in children in low-resource settings. Few studies have explored the consequences of simultaneous intoxication with heat-stable enterotoxin (ST) and heat-labile enterotoxin (LT) despite the increased prevalence of wild ETEC isolates expressing both toxins. We therefore used a combination of tissue culture and murine models to explore the impact of simultaneous ST + LT intoxication on epithelial and myeloid cells.
View Article and Find Full Text PDFIntracellular reduction-oxidation (RedOx) status mediates a myriad of critical biological processes. Importantly, RedOx status regulates the differentiation of hematopoietic stem and progenitor cells (HSPCs), mesenchymal stromal cells (MSCs) and maturation of CD8+ T Lymphocytes. In most cells, mitochondria are the greatest contributors of intracellular reactive oxygen species (ROS).
View Article and Find Full Text PDFBackground: Systemic lupus erythematosus (SLE) is characterized by a wide spectrum of clinical and immunological abnormalities. New data have emerged about the role of inflammasomes in autoimmune diseases. We aimed to investigate whether basal inflammasome activation occurs in SLE patients, and whether a relationship between inflammasome-related-cytokines and disease activity exists.
View Article and Find Full Text PDFFlow cytometry has the potential to facilitate understanding of the heterogeneous responses of diverse brain cell populations to a variety of stimuli. However, existing methods of applying flow cytometry to brain tissues are each limited in certain ways. They either require genetically labeled cells to achieve separation of specific populations, are not applicable to previously fixed tissue, or are not compatible with downstream mRNA analysis.
View Article and Find Full Text PDF