Publications by authors named "C Plank"

Updates of SARS-CoV-2 vaccines are required to generate immunity in the population against constantly evolving SARS-CoV-2 variants of concerns (VOCs). Here we describe three novel in-silico designed spike-based antigens capable of inducing neutralising antibodies across a spectrum of SARS-CoV-2 VOCs. Three sets of antigens utilising pre-Delta (T2_32), and post-Gamma sequence data (T2_35 and T2_36) were designed.

View Article and Find Full Text PDF

Heat shock protein 70 (Hsp70) isoforms are key players in the regulation of protein homeostasis and cell death pathways and are therefore attractive targets in cancer research. Developing nucleotide-competitive inhibitors or allosteric modulators, however, has turned out to be very challenging for this protein family, and no Hsp70-directed therapeutics have so far become available. As the field could profit from alternative starting points for inhibitor development, we present the results of a fragment-based screening approach on a two-domain Hsp70 construct using in-solution NMR methods, together with X-ray-crystallographic investigations and mixed-solvent molecular dynamics simulations.

View Article and Find Full Text PDF
Article Synopsis
  • * Researchers developed a single antigen from the spike protein's receptor binding domain, which triggered strong immune responses in different animal models, including mice, rabbits, and guinea pigs against multiple SARS-related viruses.
  • * The use of DNA and mRNA-based vaccine strategies demonstrated effective protection against the Delta variant of SARS-CoV-2 in genetically modified mice, emphasizing the potential for broad-spectrum coronavirus vaccines to prevent zoonotic spillovers.
View Article and Find Full Text PDF

Nucleic acids have clear clinical potential for gene therapy. Plasmid DNA (pDNA) was the first nucleic acid to be pursued as a therapeutic molecule. Recently, mRNA came into play as it offers improved safety and affordability.

View Article and Find Full Text PDF