Inflammation and the injuries produced by free radicals are interconnected and influence each other. The underlying mechanisms of inflammation are partially attributed to the release of free radicals by immune cells, prooxidants that can also cause protein alteration. This study was performed in order to assess the potential anti-inflammatory effect of two bee venom samples harvested from Apis mellifera.
View Article and Find Full Text PDFIron oxide nanoparticles (IONPs) represent an important advance in the field of medicine with application in both diagnostic and drug delivery domains, offering a therapeutic approach that effectively overcomes physical and biological barriers. The current study aimed to assess whether oral administration of salicylic acid-functionalized iron oxide nanoparticles (SaIONPs) may exhibit beneficial effects in alleviating histological lesions in a murine monoiodoacetate (MIA) induced knee osteoarthritis model. In order to conduct our study, 15 Wistar male rats were randomly distributed into 3 work groups: Sham (S), MIA, and NP.
View Article and Find Full Text PDFThe aim of our research was the development of prolonged delivery systems for therapeutic agents with various properties (prevention and treatment of bone diseases, anti-neoplastic, anti-inflammatory, antioxidant) that would ensure sustained therapeutic levels of the active principle, above the minimum inhibitory concentration, without reaching toxic levels over a long period of time as alternatives to conventional routes of administration. PLGA (poly lactic-co-glycolic acid), a biodegradable and biocompatible synthetic polymer, FDA approved, with a 65:35 lactic acid (LA): glycolic acid (GA) copolymer ratio, was chosen as delivery system. Our studies have shown that in PBS it undergoes two simultaneous degradation processes, hydrolysis and autohydrolysis, degrading completely in about 40 days.
View Article and Find Full Text PDFIn this study, the antimicrobial activity of three Salvia spp. (S. glutinosa, S.
View Article and Find Full Text PDFStroke remains a debilitating cerebrovascular condition associated with oxidative stress, while COVID-19 has emerged as a global health crisis with multifaceted systemic implications. This study investigates the hypothesis that patients experiencing acute ischemic stroke alongside COVID-19 exhibit elevated oxidative stress markers and altered antioxidant defense mechanisms compared to those with acute ischemic stroke. We conducted a single-center prospective cross-sectional study to investigate oxidative stress balance through oxidative damage markers: TBARS (thiobarbituric acid reactive substances level) and PCARB (protein carbonyls); antioxidant defense mechanisms: TAC (total antioxidant capacity), GPx (glutathione peroxidase), GSH (reduced glutathione), CAT (catalase), and SOD (superoxide dismutase); as well as inflammatory response markers: NLR (neutrophil-to-lymphocyte ratio), CRP (C-reactive protein), and ESR (erythrocyte sedimentation rate).
View Article and Find Full Text PDF