J Opt Soc Am A Opt Image Sci Vis
April 2023
This paper presents a theoretical modeling of the speckle noise decorrelation in digital Fresnel holographic interferometry in out-of-focus reconstructed images. The complex coherence factor is derived by taking into account the focus mismatch, which depends on both the sensor-to-object distance and the reconstruction distance. The theory is confirmed by both simulated data and experimental results.
View Article and Find Full Text PDFDigital image correlation, deflectometry and digital holography are some of the full-field optical measurement techniques that have matured in recent years. Their use in vibroacoustic applications is gaining attention and there is a need for cataloging their performance in order to provide, to a broad community of users and potential future users, quantitative and qualitative evaluations of these three approaches. This paper presents an experimental comparison of the three optical methods in the context of vibration measurements, along with classical reference measurements provided by an accelerometer and a laser Doppler vibrometer.
View Article and Find Full Text PDFThis paper presents analytical modeling of the speckle decorrelation noise in digital Fresnel holographic interferometry. The theoretical analysis is carried out by considering the complex coherence factor between two speckled images from two digitally reconstructed holograms at two different instants. The expression giving the modulus of the coherence factor is established and depends on the local surface deformation and parameters from the holographic setup.
View Article and Find Full Text PDFThe use of high-speed cameras permits to visualize, analyze or study physical phenomena at both their time and spatial scales. Mixing high-speed imaging with coherent imaging allows recording and retrieving the optical path difference and this opens the way for investigating a broad variety of scientific challenges in biology, medicine, material science, physics and mechanics. At high frame rate, simultaneously obtaining suitable performance and level of accuracy is not straightforward.
View Article and Find Full Text PDFThe acoustic study of propellers in a hydrodynamic tunnel is of paramount importance during the design process, but can involve significant difficulties due to the boundary layer noise (BLN). Indeed, advanced denoising methods are needed to recover the acoustic signal in case of poor signal-to-noise ratio. The technique proposed in this paper is based on the decomposition of the wall-pressure cross-spectral matrix (CSM) by taking advantage of both the low-rank property of the acoustic CSM and the sparse property of the BLN CSM.
View Article and Find Full Text PDF