Polycomb group proteins, as part of the Polycomb repressive complexes, are essential in gene repression through chromatin compaction by canonical PRC1, mono-ubiquitylation of histone H2A by non-canonical PRC1 and tri-methylation of histone H3K27 by PRC2. Despite prevalent models emphasizing tight functional coupling between PRC1 and PRC2, it remains unclear whether this paradigm indeed reflects the evolution and functioning of these complexes. Here, we conduct a comprehensive analysis of the presence or absence of cPRC1, nPRC1 and PRC2 across the entire eukaryotic tree of life, and find that both complexes were present in the Last Eukaryotic Common Ancestor (LECA).
View Article and Find Full Text PDFCyclin-dependent kinase 2-associated protein 1 (CDK2AP1; also known as deleted in oral cancer or DOC1) is a tumor suppressor gene known to play functional roles in both cell cycle regulation and in the epigenetic control of embryonic stem cell differentiation, the latter as a core subunit of the nucleosome remodeling and histone deacetylation (NuRD) complex. In the vast majority of oral squamous cell carcinomas (OSCC), expression of the CDK2AP1 protein is reduced or lost. Notwithstanding the latter (and the DOC1 acronym), mutations or deletions in its coding sequence are extremely rare.
View Article and Find Full Text PDFThe Polycomb system modulates chromatin structure to maintain gene repression during cell differentiation. Polycomb repression involves methylation of histone H3K27 (H3K27me3) by Polycomb repressive complex 2 (PRC2), monoubiquitylation of H2A (H2Aub1) by noncanonical PRC1 (ncPRC1), and chromatin compaction by canonical PRC1 (cPRC1), which is independent of its enzymatic activity. Puzzlingly, Polycomb repression also requires deubiquitylation of H2Aub1 by Polycomb repressive deubiquitinase (PR-DUB).
View Article and Find Full Text PDFUbiquitin-specific protease 7 (USP7) has been implicated in cancer progression and neurodevelopment. However, its molecular targets remain poorly characterized. We combined quantitative proteomics, transcriptomics, and epigenomics to define the core USP7 network.
View Article and Find Full Text PDFATP-dependent chromatin remodelers control the accessibility of genomic DNA through nucleosome mobilization. However, the dynamics of genome exploration by remodelers, and the role of ATP hydrolysis in this process remain unclear. We used live-cell imaging of polytene nuclei to monitor Brahma (BRM) remodeler interactions with its chromosomal targets.
View Article and Find Full Text PDF