Publications by authors named "C Pergent-Martini"

Restoration of coastal ecosystems, particularly those dominated by seagrasses, has become a priority to recover the important ecosystem services they provide. However, assessing restoration outcomes as a success or failure remains still difficult, probably due to the unique features of seagrass species and the wide portfolio of practices used on transplanting actions. Here, several traits (maximum leaf length, number of leaves, leaf growth rate per shoot, and leaf elemental carbon and nitrogen contents) of transplanted seagrass Posidonia oceanica were compared to reference meadows in five sites of Western Mediterranean Sea in which restoration were completed in different times.

View Article and Find Full Text PDF

In the last decades, the increasing necessity to reduce atmospheric carbon dioxide (CO) concentrations has intensified interest in quantifying the capacity of coastal ecosystems to sequester carbon, referred to commonly as 'Blue Carbon' (BC). Among coastal habitats, seagrass meadows are considered as natural carbon sinks due to their capacity to store large amounts of carbon in their sediments over long periods of time. However, the spatial heterogeneity of carbon stocks in seagrass sediments needs to be better understood to improve the accuracy of BC assessments, particularly where there is high environmental variability.

View Article and Find Full Text PDF

Among blue carbon ecosystems, seagrass meadows have been highlighted for their contribution to the ocean carbon cycle and climate change mitigation derived from their capacity to store large amounts of carbon over long periods of time in their sediments. Most of the available estimates of carbon stocks beneath seagrass meadows are based on the analysis of short sediment cores in very limited numbers. In this study, high-resolution seismic reflection techniques were applied to obtain an accurate estimate of the potential size of the organic deposit underlying the meadows of the Mediterranean seagrass Posidonia oceanica (known as 'matte').

View Article and Find Full Text PDF

Coastal marine vegetation has been recently highlighted for its highly efficient carbon storage capacity. Among the sixty-four species of seagrass, Posidonia oceanica, a Mediterranean endemic species, appears to be the most effective in carbon fixation and storage. Based on new data from the study of one of the largest P.

View Article and Find Full Text PDF