gene mutations that result in the introduction of premature termination codons (PTCs) are common in cystic fibrosis (CF). This mutation type causes a severe form of the disease, likely because of low messenger RNA (mRNA) expression as a result of nonsense-mediated mRNA decay, as well as the production of a nonfunctional, truncated CFTR protein. Current therapeutics for CF, which target residual protein function, are less effective in patients with these types of mutations due in part to low CFTR protein levels.
View Article and Find Full Text PDFA depressed autophagy has previously been reported in cystic fibrosis patients with the common F508del-CFTR mutation. This report describes the synthesis and preliminary biological characterization of a novel series of autophagy activators involving fatty acid cysteamine conjugates. These molecular entities were synthesized by first covalently linking cysteamine to docosahexaenoic acid.
View Article and Find Full Text PDFThe aims of this work were to determine: 1) whether Ca2+ exit via the plasmalemmal Ca2+ ATPase (PMCA) is coupled to H+ entry via a Ca2+/H+ exchange; 2) whether operation of PMCA has an absolute requirement on external H+ (Ho); and 3) the stoichiometry and voltage-dependence of the Ca2+/H+ exchange. Barnacle muscle cells were used because of the ease with which they can be internally-perfused (e.g.
View Article and Find Full Text PDF