Background: Extracorporeal membrane oxygenation (ECMO) outcomes in small centers are commonly considered less favorable than in large-volume centers. New ECMO protocols and procedures were established in our regional community hospital system as part of a cardiogenic shock initiative. This retrospective study aims to evaluate the outcomes of veno-arterial extracorporeal membrane oxygenation (VA ECMO) and extracorporeal cardiopulmonary resuscitation (ECPR) in a community hospital system with cardiac surgery capability and assess whether protocol optimization and cannulation standards result in comparable outcomes to larger centers whether the outcomes of this new ECMO program at the community hospital setting were comparable to the United States averages.
View Article and Find Full Text PDFObjective: Extracorporeal membrane oxygenation (ECMO) can provide full pulmonary support when a patient is completely apneic. The combination of veno-venous (VV) ECMO and induced apnea can be utilized to control significant hemoptysis. We present a case of massive hemoptysis that developed while on VV ECMO and was treated with temporary discontinuation of the ventilator and serial declotting bronchoscopies.
View Article and Find Full Text PDFGlobal analysis of protein phosphorylation by mass spectrometry proteomic techniques has emerged in the last decades as a powerful tool in biological and biomedical research. However, there are several factors that make the global study of the phosphoproteome more challenging than measuring non-modified proteins. The low stoichiometry of the phosphorylated species and the need to retrieve residue specific information require particular attention on sample preparation, data acquisition and processing to ensure reproducibility, qualitative and quantitative robustness and ample phosphoproteome coverage in phosphoproteomic workflows.
View Article and Find Full Text PDFCalcium signaling regulated by the cGMP-dependent protein kinase (PKG) controls key life cycle transitions in the malaria parasite. However, how calcium is mobilized from intracellular stores in the absence of canonical calcium channels in is unknown. Here, we identify a multipass membrane protein, ICM1, with homology to transporters and calcium channels that is tightly associated with PKG in both asexual blood stages and transmission stages.
View Article and Find Full Text PDF