Currently available heart valve prostheses have no growth potential, requiring children with heart valve diseases to endure multiple valve replacement surgeries with compounding risks. This study demonstrates the in vitro proof of concept of a biostable polymeric trileaflet valved conduit designed for surgical implantation and subsequent expansion via transcatheter balloon dilation to accommodate the growth of pediatric patients and delay or avoid repeated open-heart surgeries. The valved conduit is formed via dip molding using a polydimethylsiloxane-based polyurethane, a biocompatible material shown here to be capable of permanent stretching under mechanical loading.
View Article and Find Full Text PDFThe native human heart valve leaflet contains a layered microstructure comprising a hierarchical arrangement of collagen, elastin, proteoglycans and various cell types. Here, we review the various experimental methods that have been employed to probe this intricate microstructure and which attempt to elucidate the mechanisms that govern the leaflet's mechanical properties. These methods include uniaxial, biaxial, and flexural tests, coupled with microstructural characterization techniques such as small angle X-ray scattering (SAXS), small angle light scattering (SALS), and polarized light microscopy.
View Article and Find Full Text PDF