Mitosis is largely controlled by the reversible phosphorylation of effector proteins. The addition or removal of phosphate groups alters the activities of these proteins, resulting in changes in chromosome structure, cytoskeletal dynamics, nuclear envelope integrity, and other transformations that must occur as a cell progresses through mitosis. Drosophila has been instrumental in the elucidation of the molecular mechanisms of mitosis, which are mostly conserved among animals.
View Article and Find Full Text PDFProtein inhibitor of activated STAT (PIAS) proteins are E3 SUMO ligases playing important roles in protein stability and signaling transduction pathways. PIAS proteins are overexpressed in the triple-negative breast cancer cell line MDA-MB-231, and PIAS knockout (KO) results in a reduction in cell proliferation and cell arrest in the S phase. However, the molecular mechanisms underlying PIAS functions in cell proliferation and cell cycle remain largely unknown.
View Article and Find Full Text PDFThe protein inhibitor of activated STAT1 (PIAS1) is an E3 SUMO ligase that plays important roles in various cellular pathways. Increasing evidence shows that PIAS1 is overexpressed in various human malignancies, including prostate and lung cancers. Here we used quantitative SUMO proteomics to identify potential substrates of PIAS1 in a system-wide manner.
View Article and Find Full Text PDFRev Pediatr Obstet Ginecol Pediatr
January 1976
Rev Ig Bacteriol Virusol Parazitol Epidemiol Pneumoftiziol Bacteriol Virusol Parazitol Epidemiol
March 1976