In the context of the oral cavity, an organic layer known as the mucosal pellicle (MP) adheres to the surface of the oral epithelium, playing a pivotal role in lubricating and safeguarding oral tissues. The formation of the MP is driven by interactions between a transmembrane mucin known as MUC1, located on the oral epithelium, and salivary secreted mucin, namely MUC5B and MUC7. This study aimed to investigate the function of MUC1 and the influence of its structure on MP lubrication properties.
View Article and Find Full Text PDFPurpose: This study addresses the critical issue of evaluating the risk of rupture of unruptured intracranial aneurysms (UIAs) through the assessment of the mechanical properties of the aneurysm wall. To achieve this, an original approach based on the development of an in vivo deformation device prototype (DDP) of the vascular wall is proposed. The DDP operates by pulsing a physiological fluid onto the vascular wall and measuring the resulting deformation using spectral photon counting computed tomography (SPCCT) imaging.
View Article and Find Full Text PDFIntracranial aneurysm is a major health issue related to biomechanical arterial wall degradation. Currently, no method allows predicting rupture risk based on in vivo quantitative mechanical data. This work is part of a large-scale project aimed at providing clinicians with a non-invasive patient-specific decision support tool, based on the in vivo mechanical characterisation of the aneurysm wall.
View Article and Find Full Text PDF