Navigating the duality of opioids' potent analgesia and side effects, including tolerance and hyperalgesia, is a significant challenge in chronic pain management, often prompting hazardous dose escalation to maintain analgesic effects. The peripheral mu-opioid receptor (MOR) is known to mediate these contradictory effects. Here, we show that the fms-like tyrosine kinase receptor 3 (FLT3) in peripheral somatosensory neurons drives morphine tolerance and hyperalgesia in a male rodent model.
View Article and Find Full Text PDFThe µ-opioid receptor (µOR) is an important target for pain management and molecular understanding of drug action on µOR will facilitate the development of better therapeutics. Here we show, using double electron-electron resonance and single-molecule fluorescence resonance energy transfer, how ligand-specific conformational changes of µOR translate into a broad range of intrinsic efficacies at the transducer level. We identify several conformations of the cytoplasmic face of the receptor that interconvert on different timescales, including a pre-activated conformation that is capable of G-protein binding, and a fully activated conformation that markedly reduces GDP affinity within the ternary complex.
View Article and Find Full Text PDFThe μ-opioid receptor (μOR) is an important target for pain management and the molecular understanding of drug action will facilitate the development of better therapeutics. Here we show, using double electron-electron resonance (DEER) and single-molecule fluorescence resonance energy transfer (smFRET), how ligand-specific conformational changes of the μOR translate into a broad range of intrinsic efficacies at the transducer level. We identify several cytoplasmic receptor conformations interconverting on different timescales, including a pre-activated receptor conformation which is capable of G protein binding, and a fully activated conformation which dramatically lowers GDP affinity within the ternary complex.
View Article and Find Full Text PDFSpin probe EPR spectroscopy is currently the only method to quantitatively report on the orientational ordering of graphene oxide membranes. This technique is based on the analysis of EPR spectra of a membrane containing stable radicals sorbed on oxidized graphene planes. The efficiency of the method depends on the spin probe structure; therefore, it is important to find stable paramagnetic substances that are most sensitive to the alignment of graphene oxide membranes.
View Article and Find Full Text PDFSeveral pathogenic variants have been reported in the gene associated with the inherited retinal disorders vitelliform macular dystrophy (VMD) and retinitis pigmentosa (RP). and its paralog encode for two proteoglycans, SPACR and SPACRCAN, respectively, which are the main components of the interphotoreceptor matrix (IPM), the extracellular matrix surrounding the photoreceptor cells. To determine the role of SPACR in the pathological mechanisms leading to RP and VMD, we generated a knockout mouse model lacking , the mouse ortholog.
View Article and Find Full Text PDF