Objectives: To identify and map the literature on the current state of pH-triggered strategies for resin-based materials used in direct restorative dentistry, focusing on innovative compounds, their incorporation and evaluation methods, and the main outcomes.
Data And Sources: Through a search across PubMed, Scopus, Embase, Web of Science, LILACS, Cochrane Library databases, and Google Scholar, this review identified studies pertinent to pH-responsive dental materials, excluding resin-modified glass ionomer cements.
Study Selection: From the 981 records identified, 19 in vitro studies were included, concentrating on resin-based composite resins (50 %), dentin adhesives (25 %), and sealants (25 %).
The valorization of gastropod shell wastes in the production of lime is the topic of this study. First, shells from land snail and sea snail were characterized for their mineralogical, chemical, and thermal properties. Then, the shells were calcined at 1000 °C, and the obtained quicklimes were characterized for their specific surface area, pore diameter, and particle morphology, followed by evaluation of their reactivity in wet slaking tests.
View Article and Find Full Text PDFDysfunctional hyperactivity of the lateral habenula nucleus (LHb) has emerged as a critical marker for pain-related mood impairments. Acting as a central hub, the LHb filters and disseminates pertinent information to other brain structures during learning. However, it is not well understood how intra-LHb activity is altered during cognitive demand under neuropathic pain conditions.
View Article and Find Full Text PDFGlanders is a zoonotic disease of equids caused by the bacterium Burkholderia mallei, responsible for considerable economic loss. This study aimed to describe the clinical manifestations, pathological findings, and also bacteriological and molecular methods for agent detection in naturally infected animals (16 adult horses and one fetus) detected by serological survey from three glanders outbreaks. Of the 16 horses, 6 (37.
View Article and Find Full Text PDFNew particle formation (NPF) in the tropical upper troposphere is a globally important source of atmospheric aerosols. It is known to occur over the Amazon basin, but the nucleation mechanism and chemical precursors have yet to be identified. Here we present comprehensive in situ aircraft measurements showing that extremely low-volatile oxidation products of isoprene, particularly certain organonitrates, drive NPF in the Amazonian upper troposphere.
View Article and Find Full Text PDF