The effectiveness of mRNA vaccines largely depends on their lipid nanoparticle (LNP) component. Herein, we investigate the effectiveness of DLin-KC2-DMA (KC2) and SM-102-based LNPs for the intramuscular delivery of a plasmid encoding B.1.
View Article and Find Full Text PDFIn recent years, lipid nanoparticles (LNPs) have emerged as a revolutionary technology for vaccine delivery. LNPs serve as an integral component of mRNA vaccines by protecting and transporting the mRNA payload into host cells. Despite their prominence in mRNA vaccines, there remains a notable gap in our understanding of the potential application of LNPs for the delivery of DNA vaccines.
View Article and Find Full Text PDFBackground: Mesenchymal stromal cell-derived extracellular vesicles (MSC-EVs) are a promising cell-free therapy for acute lung injury (ALI). To date, no studies have investigated their biodistribution in ALI or discerned the timing of administration for maximal lung targeting, which are crucial considerations for clinical translation. Our study aimed to characterize a mouse model of ALI and establish the distribution kinetics and optimal timing of MSC-EV delivery during lung injury.
View Article and Find Full Text PDFIntroduction: The incidence of Lyme disease (LD) in Canada and the United States has risen over the last decade, nearing 480,000 cases each year. sensu lato, the causative agent of LD, is transmitted to humans through the bite of an infected tick, resulting in flu-like symptoms and often a characteristic bull's-eye rash. In more severe cases, disseminated bacterial infection can cause arthritis, carditis and neurological impairments.
View Article and Find Full Text PDF