The resistance of pest insects to biopesticides based on the bacterium Bacillus thuringiensis (Bt) is normally associated with changes to the receptors involved in the mechanism of action of the pesticidal proteins produced by Bt. In some strains of Plutella xylostella (the diamondback moth) resistance has evolved through a signalling mechanism in which the genes encoding the receptor proteins are downregulated whereas in others it has been linked to structural changes in the receptors themselves. One such well characterized mutation is in the ABCC2 gene indicating that changes to this protein can result in resistance.
View Article and Find Full Text PDFThe fall armyworm (Spodoptera frugiperda) is a major global pest causing severe damage to various crops, especially corn. Transgenic corn producing the Cry1F pesticidal protein from the bacterium Bacillus thuringiensis (Cry1F corn) showed effectiveness in controlling this pest until S. frugiperda populations at locations in North and South America evolved practical resistance.
View Article and Find Full Text PDFThe fall armyworm (JE Smith) () is a polyphagous pest targeted by selected Cry and Vip3A insecticidal proteins from the bacterium (Bt) that are produced in transgenic Bt corn and cotton. Available evidence suggests that sublethal larval exposure to Cry1Ac increases flight activity in adult spp. However, it is not known whether this effect is also observed in survivors from generally lethal exposure to Cry1Ac.
View Article and Find Full Text PDF