Publications by authors named "C P Case"

Purpose: Diagnostic imaging interpretations by nonphysician practitioners (NPPs) are increasing. With hospital-based imaging overwhelmingly interpreted by radiologists, we studied office-based interpretations by NPPs by their physician employer specialty.

Methods: Linking Medicare claims and provider datasets, we identified imaging interpretation claims submitted by nurse practitioners and physician assistants (together NPPs) in office settings, mapping NPPs to physician employer specialties, and assessed NPP characteristics and practice patterns.

View Article and Find Full Text PDF

Background: Prenatal hypoxia, a common pregnancy complication, leads to impaired cardiovascular outcomes in the adult offspring. It results in impaired vasodilation in coronary and mesenteric arteries of the adult offspring, due to reduced nitric oxide (NO). Thromboxane A (TxA) is a potent vasoconstrictor increased in cardiovascular diseases, but its role in the impact of prenatal hypoxia is unknown.

View Article and Find Full Text PDF

The hematopoietic system is highly sensitive to ionizing radiation. Damage to the immune system may result in opportunistic infections and hemorrhage, which could lead to mortality. Inflammation triggered by tissue damage can also lead to additional local or widespread tissue damage.

View Article and Find Full Text PDF

Systemic lupus erythematosus (SLE) is a chronic autoimmune disorder that is characterized by B- and T-lymphocyte dysfunction and altered cytokine production, including elevated levels of the adipocytokine leptin. Leptin has various immunomodulatory properties, including promoting the expansion of proinflammatory T lymphocytes and the proliferation and survival of B cells. In the present study, we hypothesized that leptin antagonism would improve B- and T-cell dysfunction and attenuate hypertension in an experimental model of SLE, the NZBWF1 mouse.

View Article and Find Full Text PDF

Prenatal hypoxia is associated with placental oxidative stress, leading to impaired fetal growth and an increased risk of cardiovascular disease in the adult offspring; however, the mechanisms are unknown. Alterations in mitochondrial function may result in impaired cardiac function in offspring. In this study, we hypothesized that cardiac mitochondrial function is impaired in adult offspring exposed to intrauterine hypoxia, which can be prevented by placental treatment with a nanoparticle-encapsulated mitochondrial antioxidant (nMitoQ).

View Article and Find Full Text PDF