Publications by authors named "C P Ballance"

Individual optical addressing in chains of trapped atomic ions requires the generation of many small, closely spaced beams with low cross-talk. Furthermore, implementing parallel operations necessitates phase, frequency, and amplitude control of each individual beam. Here, we present a scalable method for achieving all of these capabilities using a high-performance integrated photonic chip coupled to a network of optical fibre components.

View Article and Find Full Text PDF

We report the first hybrid matter-photon implementation of verifiable blind quantum computing. We use a trapped-ion quantum server and a client-side photonic detection system networked via a fiber-optic quantum link. The availability of memory qubits and deterministic entangling gates enables interactive protocols without postselection-key requirements for any scalable blind server, which previous realizations could not provide.

View Article and Find Full Text PDF

All laser-driven entangling operations for trapped-ion qubits have hitherto been performed without control of the optical phase of the light field, which precludes independent tuning of the carrier and motional coupling. By placing ^{88}Sr^{+} ions in a λ=674  nm standing wave, whose relative position is controlled to ≈λ/100, we suppress the carrier coupling by a factor of 18, while coherently enhancing the spin-motion coupling. We experimentally demonstrate that the off-resonant carrier coupling imposes a speed limit for conventional traveling-wave Mølmer-Sørensen gates; we use the standing wave to surpass this limit and achieve a gate duration of 15  μs, restricted by the available laser power.

View Article and Find Full Text PDF

Objective of this article is to describe differences in the demographic and clinical characteristics, severity of illness, and outcomes in pediatric patients with different SARS-CoV-2 variants. We conducted a retrospective study of pediatric patients admitted with COVID-19 during the 3 large waves of infection within a health network in New Jersey. We included demographic characteristics, clinical features, and outcomes and compared the data with respect to the different variants.

View Article and Find Full Text PDF

We present a new method for coherent control of trapped ion qubits in separate interaction regions of a multizone trap by simultaneously applying an electric field and a spin-dependent gradient. Both the phase and amplitude of the effective single-qubit rotation depend on the electric field, which can be localized to each zone. We demonstrate this interaction on a single ion using both laser-based and magnetic-field gradients in a surface-electrode ion trap, and measure the localization of the electric field.

View Article and Find Full Text PDF