Publications by authors named "C Ottone"

Chemical amination of the enzyme was demonstrated to favor immobilization onto polydopamine (PDA)-coated magnetic nanoparticles (MNPs) for the first time, to the best of the author's knowledge. MNPs prepared via hydrothermal synthesis were coated with PDA for the immobilization of naringinase. X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, and Fourier-transform infrared spectroscopy showed that the MNPs were composed mainly of FeO with an average size of 38.

View Article and Find Full Text PDF

Hexaric acids have attracted attention lately because they are platform chemicals for synthesizing pharmaceuticals. In particular, gluconic acid is one of the most studied because it is readily available in nature. In this work, operational conditions like temperature and pH were evaluated for the enzymatic production of gluconic acid.

View Article and Find Full Text PDF

Gremlin-1, a high-affinity antagonist of bone morphogenetic proteins (BMP)-2, -4, and -7, is implicated in tumor initiation and progression. Increased gremlin-1 expression, and therefore suppressed BMP signaling, correlates with poor prognosis in a range of cancer types. A lack of published work using therapeutic modalities has precluded the testing of the hypothesis that blocking the gremlin-1/BMP interaction will provide benefits to patients.

View Article and Find Full Text PDF

Cancer is the second leading cause of death worldwide, with a dramatic impact due to the acquired resistance of cancers to used chemotherapeutic drugs and treatments. The enzyme lactate dehydrogenase (LDH-A) is responsible for cancer cell proliferation. Recently the development of selective LDH-A inhibitors as drugs for cancer treatment has been reported to be an efficient strategy aiming to decrease cancer cell proliferation and increase the sensitivity to traditional chemotherapeutics.

View Article and Find Full Text PDF

Bioelectrochemistry has gained importance in recent years for some of its applications on waste valorization, such as wastewater treatment and carbon dioxide conversion, among others. The aim of this review is to provide an updated overview of the applications of bioelectrochemical systems (BESs) for waste valorization in the industry, identifying current limitations and future perspectives of this technology. BESs are classified according to biorefinery concepts into three different categories: (i) waste to power, (ii) waste to fuel and (iii) waste to chemicals.

View Article and Find Full Text PDF