Aims: Oxidative stress and mitochondrial dysfunction participate together in the development of heart failure (HF). mRNA levels of monoamine oxidase-A (MAO-A), a mitochondrial enzyme that produces hydrogen peroxide (H(2)O(2)), increase in several models of cardiomyopathies. Therefore, we hypothesized that an increase in cardiac MAO-A could cause oxidative stress and mitochondrial damage, leading to cardiac dysfunction.
View Article and Find Full Text PDFThe serotonin 5-HT(2A) receptor belongs to the G-protein-coupled receptors (GPCRs) superfamily and mediates the hypertrophic response to serotonin (5-HT) in cardiac myocytes. At present the regulatory mechanisms of 5-HT(2A) receptor-induced myocyte hypertrophy are not fully understood. The localization and the compartmentation of GPCRs within specialized membrane microdomains are known to modulate their signalling pathway.
View Article and Find Full Text PDFEarly death of grafted bone marrow mesenchymal stem cells (MSCs) represents a major limit to their use in cell therapy of solid organs. It is well known that oxidative stress plays a major role in cell death. We have recently shown that the serotonin-degrading enzyme monoamine oxidase A (MAO-A) generates large amount of hydrogen peroxide (H2O2) responsible for cell apoptosis.
View Article and Find Full Text PDFRecent studies showed that mesenchymal stem cells (MSCs) transplantation significantly decreased cardiac fibrosis; however, the mechanisms involved in these effects are still poorly understood. In this work, we investigated whether the antifibrotic properties of MSCs involve the regulation of matrix metalloproteinases (MMPs) and matrix metalloproteinase endogenous inhibitor (TIMP) production by cardiac fibroblasts. In vitro experiments showed that conditioned medium from MSCs decreased viability, alpha-smooth muscle actin expression, and collagen secretion of cardiac fibroblasts.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
August 2009
There is substantial evidence supporting a hypertrophic action of serotonin [5-hydroxytryptamine (5-HT)] in cardiomyocytes. However, little is known about the mechanisms involved. We previously demonstrated that 5-HT-induced hypertrophy depends, in part, on the generation of reactive oxygen species by monoamine oxidase-A (MAO-A) (see Ref.
View Article and Find Full Text PDF