Publications by authors named "C Opagiste"

The magnetic structures of the Ho-based i-MAX phase (MoHo)GaC were studied with neutron powder diffraction at low temperature. (MoHo)GaC crystallizes in the orthorhombic space group Cmcm. The material undergoes two successive antiferromagnetic transitions at T = 10 K and T = 7.

View Article and Find Full Text PDF

We report the results of magnetization, heat capacity, and neutron diffraction measurements on (MoRE)AlC with RE = Dy and Tb. Temperature and field-dependent magnetization as well as heat capacity were measured on a powder sample and on a single crystal allowing the construction of the magnetic field-temperature phase diagram. To study the magnetic structure of each magnetic phase, we applied neutron diffraction in a magnetic field up to 6 T.

View Article and Find Full Text PDF

Magnetic materials are usually classified into a distinct category such as diamagnets, paramagnets or ferromagnets. The enormous progress in materials science allows one nowadays, however, to change the magnetic nature of an element in a material. Gold, in bulk form, is traditionally a diamagnet.

View Article and Find Full Text PDF

With the discovery of charge-density waves (CDWs) in most members of the cuprate high-temperature superconductors, the interplay between superconductivity and CDWs has become a key point in the debate on the origin of high-temperature superconductivity. Some experiments in cuprates point toward a CDW state competing with superconductivity, but others raise the possibility of a CDW-superconductivity intertwined order or more elusive pair-density waves (PDWs). Here, we have used proton irradiation to induce disorder in crystals of [Formula: see text] and observed a striking 50% increase of [Formula: see text], accompanied by a suppression of the CDWs.

View Article and Find Full Text PDF

We present here a quantitative analysis of the ground state and magnetic properties of CePtSi, based on a crystalline electric field description within the mean-field approximation. In this face-centered cubic compound, the point group symmetry at the Ce site is orthorhombic. One main difficulty in this low symmetry case is that the CEF potential for Ce ions is determined by five independent parameters, while only two magnetic excitations are observed by inelastic neutron scattering.

View Article and Find Full Text PDF