Publications by authors named "C O Qualset"

The continuous increase in global population prompts increased wheat production. Future wheat (Triticum aestivum L.) breeding will heavily rely on dissecting molecular and genetic bases of wheat yield and related traits which is possible through the discovery of quantitative trait loci (QTLs) in constructed populations, such as recombinant inbred lines (RILs).

View Article and Find Full Text PDF

Seed longevity is an important trait for both ex situ genebanks and the seed industry. It is partially determined by genetic factors, but is also dependent on the environmental conditions experienced by the mother plant during seed maturation, as well as those imposed during the post-harvest and storage periods. For practical reasons, the variation in longevity has repeatedly been analysed by treating fresh seed to various induced ageing protocols, but the extent to which these procedures mimic the natural ageing process remains debatable.

View Article and Find Full Text PDF

Reference populations are valuable resources in genetics studies for determining marker order, marker selection, trait mapping, construction of large-insert libraries, cross-referencing marker platforms, and genome sequencing. Reference populations can be propagated indefinitely, they are polymorphic and have normal segregation. Described are two new reference populations who share the same parents of the original wheat reference population Synthetic W7984 (Altar84/ Aegilops tauschii (219) CIGM86.

View Article and Find Full Text PDF

Background: A genome-wide assessment of nucleotide diversity in a polyploid species must minimize the inclusion of homoeologous sequences into diversity estimates and reliably allocate individual haplotypes into their respective genomes. The same requirements complicate the development and deployment of single nucleotide polymorphism (SNP) markers in polyploid species. We report here a strategy that satisfies these requirements and deploy it in the sequencing of genes in cultivated hexaploid wheat (Triticum aestivum, genomes AABBDD) and wild tetraploid wheat (Triticum turgidum ssp.

View Article and Find Full Text PDF

Single-nucleotide polymorphism was used in the construction of an expressed sequence tag map of Aegilops tauschii, the diploid source of the wheat D genome. Comparisons of the map with the rice and sorghum genome sequences revealed 50 inversions and translocations; 2, 8, and 40 were assigned respectively to the rice, sorghum, and Ae. tauschii lineages, showing greatly accelerated genome evolution in the large Triticeae genomes.

View Article and Find Full Text PDF