Publications by authors named "C O Dorso"

We propose an epidemiological model that explores the effect of human mobility on the spatio-temporal dynamics of the COVID-19 outbreak, in the spirit to those considered in Refs. Barmak et al. (2011, 2016) and Medus and Dorso (2011) [1].

View Article and Find Full Text PDF

The "faster-is-slower" effect arises when crowded people push each other to escape through an exit during an emergency situation. As individuals push harder, a statistical slowing down in the evacuation time can be achieved. The slowing down is caused by the presence of small groups of pedestrians (say, a small human cluster) that temporarily block the way out when trying to leave the room.

View Article and Find Full Text PDF

We present a stochastic dynamical model for the transmission of dengue that considers the co-evolution of the spatial dynamics of the vectors (Aedes aegypti) and hosts (human population), allowing the simulation of control strategies adapted to the actual evolution of an epidemic outbreak. We observed that imposing restrictions on the movement of infected humans is not a highly effective strategy. In contrast, isolating infected individuals with high levels of compliance by the human population is efficient even when implemented with delays during an ongoing outbreak.

View Article and Find Full Text PDF

Background: Dipeptidylpeptidase 4 (DPP4) inhibitors have clinical benefit in patients with type 2 diabetes mellitus by increasing levels of glucose-lowering incretin hormones, such as glucagon-like peptide -1 (GLP-1), a peptide with a short half life that is secreted for approximately 1 hour following a meal. Since drugs with prolonged binding to their target have been shown to maximize pharmacodynamic effects while minimizing drug levels, we developed a time-dependent inhibitor that has a half-life for dissociation from DPP4 close to the duration of the first phase of GLP-1 release.

Results: Saxagliptin and its active metabolite (5-hydroxysaxagliptin) are potent inhibitors of human DPP4 with prolonged dissociation from its active site (Ki = 1.

View Article and Find Full Text PDF
Dengue epidemics and human mobility.

Phys Rev E Stat Nonlin Soft Matter Phys

July 2011

In this work we explore the effects of human mobility on the dispersion of a vector borne disease. We combine an already presented stochastic model for dengue with a simple representation of the daily motion of humans on a schematic city of 20 × 20 blocks with 100 inhabitants in each block. The pattern of motion of the individuals is described in terms of complex networks in which links connect different blocks and the link length distribution is in accordance with recent findings on human mobility.

View Article and Find Full Text PDF