Mesenchymal stromal cells (MSCs) are multipotent adult stem cells which possess immunomodulatory and repair capabilities. In this study, we investigated whether MSC therapy could modulate inflammation and lung damage in the lungs of Scnn1b-transgenic mice overexpressing the β-subunit of the epithelial sodium channel (β-ENaC), a model with features of Cystic Fibrosis lung disease. Human bone marrow derived MSC cells were intravenously delivered to mice, prior to collection of bronchoalveolar lavage (BALF) and tissue.
View Article and Find Full Text PDFBackground: The inflammatory changes that underlie the heterogeneous presentations of COVID-19 remain incompletely understood. In this study we aimed to identify inflammatory profiles that precede the development of severe COVID-19, that could serve as targets for optimised delivery of immunomodulatory therapies and provide insights for the development of new therapies.
Methods: We included individuals sampled <10 days from COVID-19 symptom onset, recruited from both inpatient and outpatient settings.
Severe lung injury requiring mechanical ventilation may lead to secondary fibrosis. Senescence, a cell response characterized by cell cycle arrest and a shift toward a proinflammatory/profibrotic phenotype, is one of the involved mechanisms. In this study, we explore the contribution of mechanical stretch as a trigger of senescence of the respiratory epithelium and its link with fibrosis.
View Article and Find Full Text PDF