Publications by authors named "C O'Flatharta"

Adult Mesenchymal Stem Cells (MSCs) have a well-established tumor-homing capacity, highlighting potential as tumor-targeted delivery vehicles. MSCs secrete extracellular vesicle (EV)-encapsulated microRNAs, which play a role in intercellular communication. The aim of this study was to characterize a potential tumor suppressor microRNA, miR-379, and engineer MSCs to secrete EVs enriched with miR-379 for in vivo therapy of breast cancer.

View Article and Find Full Text PDF

Aim: To fabricate multimodal nanoconstruct that act as a single node for photoacoustic imaging (PAI) and photothermal therapy (PTT) in the fight against cancer.

Materials & Methods: Dual plasmonic gold nanostars (DPGNS) were chemically synthesized by reducing gold precursor using ascorbic acid and silver ions as shape directing agent. PAI and PTT were performed using commonly available 1064 nm laser source on DPGNS embedded tumor xenografts on mice.

View Article and Find Full Text PDF

In vivo imaging is a platform technology with the power to put function in its natural structural context. With the drive to translate stem cell therapies into pre-clinical and clinical trials, early selection of the right imaging techniques is paramount to success. There are many instances in regenerative medicine where the biological, biochemical, and biomechanical mechanisms behind the proposed function of stem cell therapies can be elucidated by appropriate imaging.

View Article and Find Full Text PDF

Despite the immunosuppressive, homing, and regenerative capabilities of mesenchymal stem cells (MSCs), their ability to migrate to arthritic joints and influence the course of arthritis in vivo remains poorly understood. The objective of this study was to determine if allogeneic MSCs migrate to inflamed joints in vivo and to determine if MSCs expressing the costimulation blocker cytotoxic T lymphocyte associated antigen-4 coupled to immunoglobulin-G (CTLA4Ig) could be used to ameliorate collagen induced arthritis (CIA). The migration of systemically delivered inbred mouse strain (FVB) MSCs to migrate to inflamed joints in CIA was studied using real-time quantitative polymerase chain reaction.

View Article and Find Full Text PDF

Introduction: The immunological and homing properties of mesenchymal stem cells (MSCs) provide a potentially attractive treatment for arthritis. The objective of this study was to determine effects of genetic disparity on the immunosuppressive potential of MSCs in vitro and in vivo within collagen induced arthritis (CIA).

Methods: The ability of DBA/1, FVB and BALB/c MSC preparations to impact the cytokine release profile of CD3/CD28 stimulated DBA/1 T cells was assessed in vitro.

View Article and Find Full Text PDF