The topology of subunit i, a component of the yeast F(o)F(1)-ATP synthase, was determined by the use of cysteine-substituted mutants. The N(in)-C(out) orientation of this intrinsic subunit was confirmed by chemical modification of unique cysteine residues with 4-acetamido-4'-maleimidylstilbene-2,2'-disulfonic acid. Near-neighbor relationships between subunit i and subunits 6, f, g, and d were demonstrated by cross-link formation following sulfhydryl oxidation or reaction with homobifunctional and heterobifunctional reagents.
View Article and Find Full Text PDFThe purine-cytosine permease (PCP), a carrier located in the plasma membrane of Saccharomyces cerevisiae, mediates the active transport of purine (adenine, guanine and hypoxanthine) and cytosine into the cell. Previous studies [Ferreira, T, Brèthes, D., Pinson, B.
View Article and Find Full Text PDFThe purine-cytosine permease from Saccharomyces cerevisiae mediates the active transport through the plasma membrane of adenine, hypoxanthine, guanine and cytosine using the proton electrochemical potential difference as an energy source. Analysis of the activity of strains mutated in a hydrophilic segment (371-377) of the polypeptidic chain has shown the involvement of this segment in the maintenance of the active three-dimensional structure of the carrier. In an attempt to identify permease domains that could interact functionally and/or physically with this segment, we looked for second-site mutations that could suppress the effects of amino acid changes in this region.
View Article and Find Full Text PDFThe purine-cytosine permease is a carrier localized in the plasma membrane of the yeast Saccharomyces cerevisiae. The energetics of cytosine transport catalyzed by this permease has been studied in an artificial system obtained by fusion between proteoliposomes containing beef heart cytochrome c oxidase and plasma membrane-enriched fractions of a S. cerevisiae strain overexpressing the permease.
View Article and Find Full Text PDF