We employ mesoscopic simulations to study the thermophoretic motion of polymers in a solvent via multiparticle collision dynamics (MPCD). As the usual solvent-monomer collision rules employed in MPCD involving polymers fail to cause thermophoresis, we extend the technique by introducing explicit solvent-monomer interactions, while the solvent molecules remain ideal with respect to one another. We find that with purely repulsive polymer-solvent interaction, the polymer exhibits thermophilic behavior, whereas to display thermophobic behavior, the polymer-solvent potential requires the presence of attractions between solvent particles and monomers, in accordance with previous experimental findings.
View Article and Find Full Text PDFThe dynamical and conformational properties of the comb polymer with various rigidities of the backbone and arms in steady shear flow are studied by using a hybrid mesoscale simulation approach that combines multiparticle collision dynamics with standard molecular dynamics. First, during the process of the comb polymer undergoing periodic tumbling motion, we find that the rigidity of the arms always promotes the tumbling motion of the comb polymer, but the rigidity of the backbone shifts from hindering to promoting it with increasing the rigidity of the arms. In addition, the comb polymer transitions from vorticity tumbling to gradient tumbling with the increase in shear rate.
View Article and Find Full Text PDFWe study the influence of core-shell morphology on the structural characteristics of nanogels. Using computer simulations, we examine three different types of systems, distinguished by their intermonomer interactions: those with excluded volume only; those with charged monomers and excluded volume; and those with excluded volume combined with a certain number of magnetised nanoparticles incorporated within the nanogel. We observe that if the polymers in the shell are short and dense, they tend to penetrate the core.
View Article and Find Full Text PDFThe design of functional polymeric materials with tunable response requires a synergetic use of macromolecular architecture and interactions. Here, we combine experiments with computer simulations to demonstrate how physical properties of gels can be tailored at the molecular level, using star block copolymers with alternating block sequences as a paradigm. Telechelic star polymers containing attractive outer blocks self-assemble into soft patchy nanoparticles, whereas their mirror-image inverted architecture with inner attractive blocks yields micelles.
View Article and Find Full Text PDFThe shape of Janus particles is directly connected to their adsorption behavior. Janus tadpole polymers offer a unique topological architecture that includes competition between entropic, enthalpic, and topological terms in the adsorption free energy; accordingly, non-trivial adsorption behavior patterns are expected. We study the surface adsorption of Janus tadpole polymers by means of Monte Carlo simulations, finding that, depending on which part of the tadpole polymers is preferentially adsorbing on the surface, very different types of behavior for both the adsorbed polymeric phase and of the brush arise.
View Article and Find Full Text PDF